Last updated:
0 purchases
pytorchmodules 0.3.5
# pytorch_modules
## Introduction
A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.
## Features
Advanced neural network modules/loss functions/optimizers
Ultra-efficient trainer and dataloader that allows you to take full advantage of GPU
## Installation
sudo pip3 install pytorch_modules
or
sudo python3 setup.py install
## Usage
### pytorch_modules.utils
Includes a variety of utils for pytorch model training.
See [woodsgao/pytorch_segmentation](https://github.com/woodsgao/pytorch_segmentation) as a tutorial.
### pytorch_modules.nn
This module contains a variety of neural network layers, modules and loss functions.
import torch
from pytorch_modules.nn import ResBlock
# NCHW tensor
inputs = torch.ones([8, 8, 224, 224])
block = ResBlock(8, 16)
outputs = block(inputs)
### pytorch_modules.backbones
This module includes a series of modified backbone networks.
import torch
from pytorch_modules.backbones import ResNet
# NCHW tensor
inputs = torch.ones([8, 8, 224, 224])
model = ResNet(32)
outputs = model.stages[0](inputs)
### pytorch_modules.datasets
This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset .
The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation.
Please see the corresponding repository for detailed usage.
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.