0 purchases
pytorch dart
Pytorch_Dart #
Pytorch_Dart is a Dart wrapper for Libtorch, designed to provide a seamless experience akin to PyTorch.
It serves as an alternative to NumPy for Dart/Flutter projects.
This package is experimental and APIs may change in the future.
Platform
Status
Prebuilt binaries
Windows
✅
x64(without CUDA)
Android
✅
arm64-v8aarmeabi-v7ax86_64x86
Linux
✅
x64(without CUDA)
iOS
❌
coming soon
MacOS
❌
coming soon
Note: To run Pytorch_Dart on MacOS, replace /libtorch-linux/libtorch with libtorch for MacOS.
Getting Started #
Add pytorch_dart to your pubspec.yaml #
To include Pytorch_Dart in your Dart/Flutter project, add the following to your pubspec.yaml and then save pubspec.yaml :
pytorch_dart:^0.2.2
copied to clipboard
Setup #
Run the setup command below:
flutter pub get
dart run pytorch_dart:setup --platform <your_platform>
copied to clipboard
<your_platform> only support linux , android and windows now.(iOS coming soon)
For windows developers,if you use debug version of libtorch,the program works well in debug mode but throw some exceptions when you build in release mode and vice versa.
If you need to build in release mode,you have to install the release version of libtorch.
The setup process will install the debug version by default.If you want to get release version of libtorch,run:
dart run pytorch_dart:setup --platform windows release
copied to clipboard
Enjoy it! #
Now you can import Pytorch_Dart in your Dart/Flutter project:
import 'package:pytorch_dart/pytorch_dart.dart' as torch;
copied to clipboard
For Android developers #
Libtorch for Android requires a specific version of the NDK. Install NDK version 21.4.7075529 as instructed here.
Add the NDK path to your project's android/local.properties:
ndk.dir=<path_to_your_ndk>/21.4.7075529
copied to clipboard
Ensure that your local.properties file looks similar to:
flutter.sdk=/home/pc/flutter
sdk.dir=/home/pc/Android/Sdk
flutter.buildMode=debug
ndk.dir=/home/pc/Android/Sdk/ndk/21.4.7075529
copied to clipboard
Also,'torch.load()' and 'torch.save()' are not available on Android.
Troubleshooting #
Windows
Launching lib\main.dart on Windows in debug mode...
√ Built build\windows\x64\runner\Debug\example.exe.
Error waiting for a debug connection: The log reader stopped unexpectedly, or never started.
Error launching application on Windows.
copied to clipboard
Solutions:
Download libtorch from here(Download libtorch-win-shared-with-deps-2.2.2+cpu.zip if you want to run in release mode,and download libtorch-win-shared-with-deps-debug-2.2.2+cpu.zip if you want to run in debug mode.)
Unzip it
copy all the files from libtorch\lib\ to build\windows\x64\runner\Debug\ (debug mode) or build\windows\x64\runner\Release(release mode)
Usage #
Brief Introduction #
It include some basic functions in torch now.
Support for inferencing TorchScript models.
Almost all function usages remain consistent with PyTorch.
Broadcasting also works for pytorch_dart.
Support for torch.nn is coming soon.
Example
var d=torch.eye(3,2);
print(d);
copied to clipboard
Result:
flutter:
1 0
0 1
0 0
[ CPUFloatType{3,2} ]
copied to clipboard
Operator overloading #
Attention:Dart has no magic functions(like _radd_ in python).Therefore, in binary operators, tensor can only be on the left side.
Example
import 'package:pytorch_dart/pytorch_dart.dart' as torch;
...
var c=torch.DoubleTensor([[1.0,2.0,3.0],[4.0,5.0,6.0]]);
var d=c+10;// no errors
var e=10+c;//cause errors
copied to clipboard
Other binary operators (-,*,/)are just like +
For operator [] ,you can use it just like in Pytorch.
However,in current version,slicing is not supported.Therefore,you cant't use [a:b] to select sub tensor.
Example
import 'package:pytorch_dart/pytorch_dart.dart' as torch;
...
var c=torch.DoubleTensor([[1.0,2.0,3.0],[4.0,5.0,6.0]]);
print(c[0][0]);
copied to clipboard
Result
flutter: 1
[ CPUDoubleType{} ]
copied to clipboard
Model Inferencing #
About how to get a TorchScript Model,see here.
In Pytorch,we use torch.jit.load() to load TorchScript Models and module.forward() to inference.
In Pytorch_Dart,we have equivalent functions:torch.jit_load() and module.forward().They have some small differnece with their Pytorch version.
torch.jit_load() is just like torch.jit.load() in Pytorch,but it is an asynchronous function because we use rootBundle.
To load a model,see example below:
torch.JITModule? module;
void _loadModel() async{
module=await torch.jit_load('assets/traced_resnet_model.pt');
}
copied to clipboard
However,forward() has some differences with the original Pytorch version.
In Dart,it receives List <Dynamic> which means the input of the function forward() can be List<Tensor>,List<Scalar> or etc.
If the input of your model is a single tensor:
In Python, the following code is written:
outputTensor = module.forward(inputTensor)
copied to clipboard
But in Dart,you have to put inputTensor into a list:
var outputTensor = module!.forward([inputTensor]); //! is a null-check opeator
copied to clipboard
Example
We provide an image classigfication example in /example.
Run code below to run it:
git clone https://github.com/Playboy-Player/pytorch_dart
cd pytorch_dart
git submodule init
git submodule update --remote
dart run pytorch_dart:setup --platform <your_platform>
cd example
flutter run --debug //or "flutter run --release"
copied to clipboard
Functions/APIs #
Just like Pytorch,functions in Pytorch_Dart are divided into multiple parts.
In current version,APIs are dividied into 3 parts:
torch
torch.tensor
torch.jit
torch #
Supported Functions
torch.tensor() is not supported in pytorch_dart,use torch.IntTensor(),torch.FloatTensor() or torch.DoubleTensor() to create tensors.
Functions avaliable now:
Attention: parameters wrapped by {} are optional parameters.
torch.ones(List<int> size,{bool requiresGrad = false, int dtype = float32, Device? device_used})
torch.full(List<int> size, num values,{int dtype = float32, bool requiresGrad = false, Device? device_used}))
torch.eye(int n, int m,{bool requiresGrad = false, int dtype = float32, Device? device_used})
torch.IntTensor(List<int> list)
torch.FloatTensor(List<double> list)
torch.DoubleTensor(List<double> list)
torch.arange(double start, double end, double step,{bool requiresGrad = false})
torch.linspace(double start, double end, int steps,{bool requiresGrad = false})
torch.logspace(double start, double end, int steps, double base,{bool requiresGrad = false})
torch.equal(Tensor a,Tensor b)
torch.add(Tensor a, tensor b,{double alpha=1})
torch.sub(Tensor a, tensor b,{double alpha=1})
torch.mul(Tensor a, tensor b)
torch.div(Tensor a, tensor b)
torch.add_(Tensor a, tensor b,{double alpha=1})
torch.sub_(Tensor a, tensor b,{double alpha=1})
torch.mul_(Tensor a, tensor b)
torch.div_(Tensor a, tensor b)
torch.sum(Tensor a)
torch.mm(Tensor a, Tensor b)
torch.transpose(Tensor a,int dim0,int dim1)
torch.permute(Tensor a,List <int> permute_list)
torch.save(Tensor a,String path)
torch.load(String path)
torch.relu()
torch.leaky_relu()
torch.tanh()
torch.sigmoid()
torch.flatten(Tensor a, int startDim, int endDim)
torch.unsqueeze(Tensor tensor, int dim)
torch.clone(Tensor tensor)
torch.topk(Tensor a, int k,{int dim = -1, bool largest = true, bool sorted = true})
torch.allClose(Tensor left, Tensor right,{double rtol = 1e-08, double atol = 1e-05, bool equal_nan = false})
torch.empty(List<int> size,{bool requiresGrad = false, int dtype = float32, Device? device_used})
torch.ones(List<int> size,{bool requiresGrad = false, int dtype = float32, Device? device_used})
torch.full(List<int> size, num values,{int dtype = float32, bool requiresGrad = false, Device? device_used}))
torch.eye(int n, int m,{bool requiresGrad = false, int dtype = float32, Device? device_used})
copied to clipboard
Almost all function usages remain consistent with PyTorch.
Some in-place operation are supported,such as torch.add_()
Example Usage
import 'package:pytorch_dart/pytorch_dart.dart' as torch;
...
var c=torch.DoubleTensor([[1.0,2.0,3.0],[4.0,5.0,6.0]]);
var d=torch.add(10,c)
print(d)
copied to clipboard
Result:
flutter:
11 12 13
14 15 16
[ CPUDoubleType{2,3} ]
copied to clipboard
torch.tensor #
torch.tensor Methods
.dim()
.dtype()
.shape()
.size()
.detach()
.add_()
.sub_()
.mul_()
.div_()
.toList()
.unsqueeze(int dim)
.clone()
.relu()
.leaky_relu()
.sigmoid()
.tanh()
.flatten()
.equal(Tensor other)
.sum()
.mm(Tensor other)
.view(List <int> size)
Note: The .dtype() method in Pytorch_Dart differs from PyTorch. In PyTorch, .dtype returns an object representing the tensor's data type. In Pytorch_Dart, .dtype() returns a numerical representation of the data type. This may be updated in future versions.
Example
import 'package:pytorch_dart/pytorch_dart.dart' as torch;
...
var c=torch.DoubleTensor([[1.0,2.0,3.0],[4.0,5.0,6.0]]);
print(c.dtype())
copied to clipboard
Result
flutter: 7
copied to clipboard
7 represents torch.float64.
All the corresponding relations are in lib/src/constants.dart
Other function usages remain consistent with PyTorch.
torch.jit #
See Model Inferencing.
Roadmap #
Add support for iOS and MacOS.
Add support for other functions,such as torch.nn
Acknowledgement #
This project leverages contributions from pytorch-flutter-FFI-example ,gotorch and TorchSharp
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.