rechub 0.0.5

Creator: bradpython12

Last updated:

0 purchases

rechub 0.0.5 Image
rechub 0.0.5 Images

Languages

Categories

Add to Cart

Description:

rechub 0.0.5

RecHub
Implementations of some methods in recommendation.
Models



Model
Full name
Type
Paper




NCF
Neural Collaborative Filtering
Non-graph
https://arxiv.org/abs/1708.05031


GCN
Graph Convolutional Networks
Homogeneous graph
https://arxiv.org/abs/1609.02907


LightGCN
Light GCN
Homogeneous graph
https://arxiv.org/abs/2002.02126


GAT
Graph Attention Networks
Homogeneous graph
https://arxiv.org/abs/1710.10903


NGCF
Neural Graph Collaborative Filtering
Homogeneous graph
https://arxiv.org/abs/1905.08108


HET-GCN
/
Heterogeneous graph
/


HET-LightGCN
/
Heterogeneous graph
/


HET-GAT
/
Heterogeneous graph
/


HET-NGCF
/
Heterogeneous graph
/



Note: we define the heterogeneous graph as a graph with different types of edges instead of a graph with different types of edges or nodes. Thus, for a common user-item bipartite graph, although more than one types of node exist, we still think it as a homogeneous graph.
WIP

DeepFM
DSSM
LightGCN
DiffNet
DiffNet++
DANSER
GraphRec

Requirements

Linux-based OS
Python 3.6+

Get started
Install RecHub
Install from https://pypi.org/:
pip install rechub

Or install manually:
git clone https://github.com/yusanshi/RecHub.git
cd RecHub
pip install .

Install DGL
Note one of the most important dependencies for RecHub, DGL, will not be automatically installed while installing RecHub. You should manually install CPU or CUDA build of DGL.
# This is for CPU version. For CUDA version, use dgl-cu[xxx]
pip install dgl # or dgl-cu92, dgl-cu101, dgl-cu102, dgl-cu110 for CUDA 9.2, 10.1, 10.2, 11.0, respectively.

Check out the instructions on https://www.dgl.ai/pages/start.html for more details.
If there are any problems with later commands, try to install this specific version:
pip install dgl==0.5.3 # or CUDA version: dgl-cu[xxx]==0.5.3

Download the dataset
Here we use the LSEC-Small dataset used in our work LSEC-GNN. It is a dataset featuring live stream E-commerce.
Create an empty directory as our ROOT_DIRECTORY. Then:
# In ROOT_DIRECTORY
mkdir data && cd data
wget https://github.com/yusanshi/LSEC-GNN/files/6520753/LSEC-Small-aa.dummy.gz \
https://github.com/yusanshi/LSEC-GNN/files/6520754/LSEC-Small-ab.dummy.gz \
https://github.com/yusanshi/LSEC-GNN/files/6520757/LSEC-Small-ac.dummy.gz \
https://github.com/yusanshi/LSEC-GNN/files/6520760/LSEC-Small-ad.dummy.gz
cat LSEC-Small-* | tar -xzvf -

Write the metadata file
We use a metadata file to define the nodes, edges for the graph and the tasks. For LSEC-Small dataset, create ROOT_DIRECTORY/metadata/LSEC.json as follows:
{
"graph": {
"node": [
{
"filename": "item.tsv",
"attribute": []
},
{
"filename": "user.tsv",
"attribute": []
},
{
"filename": "streamer.tsv",
"attribute": []
}
],
"edge": [
{
"filename": "user-item-buy.tsv",
"weighted": false
},
{
"filename": "user-streamer-follow.tsv",
"weighted": false
},
{
"filename": "streamer-item-sell.tsv",
"weighted": false
}
]
},
"task": [
{
"filename": "user-item-buy.tsv",
"type": "top-k-recommendation",
"loss": "binary-cross-entropy",
"weight": 1
}
]
}

Run
# In ROOT_DIRECTORY

# Train
python -m rechub.train \
--dataset_path ./data/LSEC-Small/ \
--metadata_path ./metadata/LSEC.json \
--model_name HET-GCN \
--embedding_aggregator concat \
--predictor mlp \
--edge_choice 0 1 2 \
--save_checkpoint True \
--checkpoint_path ./checkpoint/

# Load latest checkpoint and evaluate on the test set
python -m rechub.test \
--dataset_path ./data/LSEC-Small/ \
--metadata_path ./metadata/LSEC.json \
--model_name HET-GCN \
--embedding_aggregator concat \
--predictor mlp \
--edge_choice 0 1 2 \
--checkpoint_path ./checkpoint/

You can visualize the metrics with TensorBoard.
tensorboard --logdir runs


Tip: by adding REMARK environment variable, you can make the runs name in TensorBoard and log file name more meaningful. For example, REMARK=lr-0.001_attention-head-10 python -m rechub.train ....

Development
Use your own dataset
Using LSEC-Small dataset as the example, here we demonstrate the dataset format. After this section, you can convert your own dataset into this format.
The LSEC-Small dataset captures the tripartite interaction information in live stream E-commerce scenario. We have three types of nodes: items, users and streamers, and three types of edges: user-item-buy, user-streamer-follow and streamer-item-sell. The structure of the dataset is as follows:
JD-small
├── train
│   ├── user.tsv
│   ├── item.tsv
│   ├── streamer.tsv
│   ├── user-item-buy.tsv
│   ├── user-streamer-follow.tsv
│   └── streamer-item-sell.tsv
├── val
│   └── user-item-buy.tsv
└── test
└── user-item-buy.tsv

In train, the first three files are node description files and the last three are edge description files.
In node description files are the indexs and other attributes for nodes. In LSEC-Small dataset, there are no other attributes for nodes, but only the basic index information. So the contents of user.tsv, item.tsv and streamer.tsv are:
user
0
1
2
3
4
...

item
0
1
2
3
4
...

streamer
0
1
2
3
4
...

In the edge description files, each line represents an edge. Take user-item-buy.tsv for example, its content is:
user item
0 9349
0 10535
0 19326
1 555
1 2154
...

In val and test directory, there are edge description files for model evaluation. Different from those in train, they have additional column value indicating the existence of the edge. For example, in val the content of user-item-buy.tsv is:
user item value
1 11301 1
1 13353 1
1 15315 1
1 11318 1
1 18206 1
...

TODO

Support more models.
Support node attributes.
Support multiple tasks (e.g., interaction-attribute-regression).

Tricks


Use this to automatically select the GPU with most free memory.
alias python='CUDA_VISIBLE_DEVICES=$(nvidia-smi --query-gpu=memory.free --format=csv,nounits,noheader | nl -v 0 | sort -nrk 2 | cut -f 1 | head -n 1 | xargs) python'

License:

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Files In This Product:

Customer Reviews

There are no reviews.