0 purchases
riprova 0.3.1
riprova (meaning retry in Italian) is a small, general-purpose and versatile Python library
that provides retry mechanisms with multiple backoff strategies for any sort of failed operations.
It’s domain agnostic, highly customizable, extensible and provides a minimal API that’s easy to instrument in any code base via decorators, context managers or raw API consumption.
For a brief introduction about backoff mechanisms for potential failed operations, read this article.
Features
Retry decorator for simple and idiomatic consumption.
Simple Pythonic programmatic interface.
Maximum retry timeout support.
Supports error whitelisting and blacklisting.
Supports custom error evaluation retry logic (useful to retry only in specific cases).
Automatically retry operations on raised exceptions.
Supports asynchronous coroutines with both async/await and yield from syntax.
Configurable maximum number of retry attempts.
Highly configurable supporting max retries, timeouts or retry notifier callback.
Built-in backoff strategies: constant, fibonacci and exponential backoffs.
Supports sync/async context managers.
Pluggable custom backoff strategies.
Lightweight library with almost zero embedding cost.
Works with Python +2.6, 3.0+ and PyPy.
Backoff strategies
List of built-in backoff strategies.
Constant backoff
Fibonacci backoff
Exponential backoff
You can also implement your own one easily.
See ConstantBackoff for an implementation reference.
Installation
Using pip package manager (requires pip 1.9+. Upgrade it running: pip install -U pip):
pip install -U riprova
Or install the latest sources from Github:
pip install -e git+git://github.com/h2non/riprova.git#egg=riprova
API
riprova.retry
riprova.Retrier
riprova.AsyncRetrier
riprova.Backoff
riprova.ConstantBackoff
riprova.FibonacciBackoff
riprova.ExponentialBackoff
riprova.ErrorWhitelist
riprova.ErrorBlacklist
riprova.add_whitelist_error
riprova.RetryError
riprova.RetryTimeoutError
riprova.MaxRetriesExceeded
riprova.NotRetriableError
Examples
You can see more featured examples from the documentation site.
Basic usage examples:
import riprova
@riprova.retry
def task():
"""Retry operation if it fails with constant backoff (default)"""
@riprova.retry(backoff=riprova.ConstantBackoff(retries=5))
def task():
"""Retry operation if it fails with custom max number of retry attempts"""
@riprova.retry(backoff=riprova.ExponentialBackOff(factor=0.5))
def task():
"""Retry operation if it fails using exponential backoff"""
@riprova.retry(timeout=10)
def task():
"""Raises a TimeoutError if the retry loop exceeds from 10 seconds"""
def on_retry(err, next_try):
print('Operation error: {}'.format(err))
print('Next try in: {}ms'.format(next_try))
@riprova.retry(on_retry=on_retry)
def task():
"""Subscribe via function callback to every retry attempt"""
def evaluator(response):
# Force retry operation if not a valid response
if response.status >= 400:
raise RuntimeError('invalid response status') # or simple return True
# Otherwise return False, meaning no retry
return False
@riprova.retry(evaluator=evaluator)
def task():
"""Use a custom evaluator function to determine if the operation failed or not"""
@riprova.retry
async def task():
"""Asynchronous coroutines are also supported :)"""
Retry failed HTTP requests:
import pook
import requests
from riprova import retry
# Define HTTP mocks to simulate failed requests
pook.get('server.com').times(3).reply(503)
pook.get('server.com').times(1).reply(200).json({'hello': 'world'})
# Retry evaluator function used to determine if the operated failed or not
def evaluator(response):
if response != 200:
return Exception('failed request') # you can also simply return True
return False
# On retry even subscriptor
def on_retry(err, next_try):
print('Operation error {}'.format(err))
print('Next try in {}ms'.format(next_try))
# Register retriable operation
@retry(evaluator=evaluator, on_retry=on_retry)
def fetch(url):
return requests.get(url)
# Run task that might fail
fetch('http://server.com')
License
MIT - Tomas Aparicio
v0.3.0 / 2023-05-20
Deprecate asyncio.corouting
Drop Python 2 and 3.4 support
v0.2.7 / 2018-08-24
Merge pull request #20 from ffix/forward-exception-instance
Correct linter warnings
Re-raise exception instance instead of new exception with no args
Merge pull request #19 from EdwardBetts/spelling
Correct spelling mistakes.
feat(setup): support Python 3.7
feat(History): add version changes
v0.2.6 / 2018-04-14
fix(#17): handle as legit retriable error Timeout exceptions.
v0.2.5 / 2018-03-21
Merge pull request #15 from jstasiak/allow-newer-six
Allow newer six
feat(History): update changes
v0.2.5 / 2018-03-21
Merge pull request #15 from jstasiak/allow-newer-six
Allow newer six
feat(History): update changes
v0.2.4 / 2018-03-20
merge(#14): Allow subsecond maxtimes for ExponentialBackoff
v0.2.3 / 2017-01-13
refactor(retry): remove unnecessary partial function
fix(retry): rename keyword param for partial application
feat(docs): improve description
refactor(Makefile): update publish task
v0.2.2 / 2017-01-06
feat(package): add wheel distribution
v0.2.1 / 2017-01-04
fix(retrier): remove debug print statement
v0.2.0 / 2017-01-02
feat(core): use seconds as default time unit (introduces API breaking changes)
refactor(examples): update examples to use new time unit
feat(contextmanager): adds context manager support
feat(examples): add context manager example
feat: add context managers support
v0.1.3 / 2016-12-30
refactor(async_retrier): simplify coroutine wrapper
feat(whitelist): add whitelist and blacklist support
feat(tests): add missing test cases for whitelist
feat(retry): pass error_evaluator param
fix(retrier): cast delay to float
fix(tests): use valid exception for Python 2.7
feat(#6): add custom error whilelist and custom error evaluator function
Merge pull request #8 from tsarpaul/master
refactor(decorator): do not expose retrier instance
v0.1.2 / 2016-12-27
fix(decorator): wrap retries instance per function call
v0.1.1 / 2016-12-27
fix(#2): handle and forward asyncio.CancelledError as non-retriable error
v0.1.0 / 2016-12-25
First version
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.