stac-pydantic 3.1.2

Creator: bradpython12

Last updated:

0 purchases

stac-pydantic 3.1.2 Image
stac-pydantic 3.1.2 Images

Languages

Categories

Add to Cart

Description:

stacpydantic 3.1.2

stac-pydantic

Pydantic models for STAC Catalogs, Collections, Items, and the STAC API spec.
Initially developed by arturo-ai.
The main purpose of this library is to provide reusable request/response models for tools such as fastapi.
For more comprehensive schema validation and robust extension support, use pystac.
Installation
python -m pip install stac-pydantic

# or

python -m pip install stac-pydantic["validation"]

For local development:
python -m pip install -e '.[dev,lint]'




stac-pydantic
STAC Version
STAC API Version
Pydantic Version




1.2.x
1.0.0-beta.1
<1*
^1.6


1.3.x
1.0.0-beta.2
<1*
^1.6


2.0.x
1.0.0
<1*
^1.6


3.0.x
1.0.0
1.0.0
^2.4


3.1.x
1.0.0
1.0.0
^2.4



* various beta releases, specs not fully implemented
Development
Install the pre-commit hooks:
pre-commit install

Testing
Ensure you have all Python versions installed that the tests will be run against. If using pyenv, run:
pyenv install 3.8.18
pyenv install 3.9.18
pyenv install 3.10.13
pyenv install 3.11.5
pyenv local 3.8.18 3.9.18 3.10.13 3.11.5

Run the entire test suite:
tox

Run a single test case using the standard pytest convention:
python -m pytest -v tests/test_models.py::test_item_extensions

Usage
Loading Models
Load data into models with standard pydantic:
from stac_pydantic import Catalog

stac_catalog = {
"type": "Catalog",
"stac_version": "1.0.0",
"id": "sample",
"description": "This is a very basic sample catalog.",
"links": [
{
"href": "item.json",
"rel": "item"
}
]
}

catalog = Catalog(**stac_catalog)
assert catalog.id == "sample"
assert catalog.links[0].href == "item.json"

Extensions
STAC defines many extensions which let the user customize the data in their catalog. stac-pydantic.extensions.validate_extensions gets the JSON schemas from the URLs provided in the stac_extensions property (caching the last fetched ones), and will validate a dict, Item, Collection or Catalog against those fetched schemas:
from stac_pydantic import Item
from stac_pydantic.extensions import validate_extensions

stac_item = {
"id": "12345",
"type": "Feature",
"stac_extensions": [
"https://stac-extensions.github.io/eo/v1.0.0/schema.json"
],
"geometry": { "type": "Point", "coordinates": [0, 0] },
"bbox": [0.0, 0.0, 0.0, 0.0],
"properties": {
"datetime": "2020-03-09T14:53:23.262208+00:00",
"eo:cloud_cover": 25,
},
"links": [],
"assets": {},
}

model = Item(**stac_item)
validate_extensions(model, reraise_exception=True)
assert getattr(model.properties, "eo:cloud_cover") == 25

The complete list of current STAC Extensions can be found here.
Vendor Extensions
The same procedure described above works for any STAC Extension schema as long as it can be loaded from a public url.
STAC API
The STAC API Specs extent the core STAC specification for implementing dynamic catalogs. STAC Objects used in an API context should always import models from the api subpackage. This package extends
Catalog, Collection, and Item models with additional fields and validation rules and introduces Collections and ItemCollections models and Pagination/ Search Links.
It also implements models for defining ItemSeach queries.
from stac_pydantic.api import Item, ItemCollection

stac_item = Item(**{
"id": "12345",
"type": "Feature",
"stac_extensions": [],
"geometry": { "type": "Point", "coordinates": [0, 0] },
"bbox": [0.0, 0.0, 0.0, 0.0],
"properties": {
"datetime": "2020-03-09T14:53:23.262208+00:00",
},
"collection": "CS3",
"links": [
{
"rel": "self",
"href": "http://stac.example.com/catalog/collections/CS3-20160503_132130_04/items/CS3-20160503_132130_04.json"
},
{
"rel": "collection",
"href": "http://stac.example.com/catalog/CS3-20160503_132130_04/catalog.json"
},
{
"rel": "root",
"href": "http://stac.example.com/catalog"
}],
"assets": {},
})

stac_item_collection = ItemCollection(**{
"type": "FeatureCollection",
"features": [stac_item],
"links": [
{
"rel": "self",
"href": "http://stac.example.com/catalog/search?collection=CS3",
"type": "application/geo+json"
},
{
"rel": "root",
"href": "http://stac.example.com/catalog",
"type": "application/json"
}],
})

Exporting Models
Most STAC extensions are namespaced with a colon (ex eo:gsd) to keep them distinct from other extensions. Because
Python doesn't support the use of colons in variable names, we use Pydantic aliasing
to add the namespace upon model export. This requires exporting
the model with the by_alias = True parameter. Export methods (model_dump() and model_dump_json()) for models in this library have by_alias and exclude_unset st to True by default:
item_dict = item.model_dump()
assert item_dict['properties']['landsat:row'] == item.properties.row == 250

CLI
Usage: stac-pydantic [OPTIONS] COMMAND [ARGS]...

stac-pydantic cli group

Options:
--help Show this message and exit.

Commands:
validate-item Validate STAC Item

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Customer Reviews

There are no reviews.