tf-semantic-segmentation 0.3.1

Creator: bradpython12

Last updated:

0 purchases

tf-semantic-segmentation 0.3.1 Image
tf-semantic-segmentation 0.3.1 Images

Languages

Categories

Add to Cart

Description:

tfsemanticsegmentation 0.3.1

TF Semantic Segmentation





Quick Start
See GETTING_STARTED, or the Colab Notebook.
Learn more at our documentation.
See upcoming features on our roadmap.
Features

Distributed Training on Multiple GPUs
Hyper Parameter Optimization using WandB
WandB Integration
Easily create TFRecord from Directory
Tensorboard visualizations
Ensemble inference

Datasets

Ade20k
Camvid
Cityscapes
MappingChallenge
MotsChallenge
Coco
PascalVoc2012
Taco
Shapes (randomly creating triangles, rectangles and circles)
Toy (Overlaying TinyImageNet with MNIST)
ISIC2018
CVC-ClinicDB

Models

Unet
Erfnet
MultiResUnet
PSP (experimental)
FCN (experimental)
NestedUnet (Unet++) (experimental)
U2Net / U2NetP (experimental)
SatelliteUnet
MobilenetUnet (unet with mobilenet encoder pre-trained on imagenet)
InceptionResnetV2Unet (unet with inception-resnet v2 encoder pre-trained on imagenet)
ResnetUnet (unet with resnet50 encoder pre-trained on imagenet)
AttentionUnet

Losses

Catagorical Crossentropy
Binary Crossentropy
Crossentropy + SSIM
Dice
Crossentropy + Dice
Tversky
Focal
Focal + Tversky

Activations

mish
swish
relu6

Optimizers

Ranger
RAdam

Normalization

Instance Norm
Batch Norm

On the fly Augmentations

flip left/right
flip up/down
rot 180
color

Getting Started
Requirements
sudo apt-get install libsm6 libxext6 libxrender-dev libyaml-dev libpython3-dev

Tensorflow (2.x) & Tensorflow Addons (optional)
pip install tensorflow-gpu==2.4.0 --upgrade
pip install tensorflow-addons==0.12.0 --upgrade

Installation
pip install tf-semantic-segmentation

Run tensorboard

Hint: To see train/test/val images you have to start tensorboard like this

tensorboard --logdir=logs/ --reload_multifile=true

Train on inbuild datasets (generator)
python -m tf_semantic_segmentation.bin.train -ds 'tacobinary' -bs 8 -e 100 \
-logdir 'logs/taco-binary-test' -o 'adam' -lr 5e-3 --size 256,256 \
-l 'binary_crossentropy' -fa 'sigmoid' \
--train_on_generator --gpus='0' \
--tensorboard_train_images --tensorboard_val_images

Create a tfrecord from a dataset
# create a tfrecord from the toy dataset and resize to 128x128
tf-semantic-segmentation-tfrecord-writer -d 'toy' -c /hdd/datasets/ -s '128,128'

Train using a fixed record path
python -m tf_semantic_segmentation.bin.train --record_dir=records/cityscapes-512x256-rgb/ \
-bs 4 -e 100 -logdir 'logs/cityscapes-bs8-e100-512x256' -o 'adam' -lr 1e-4 -l 'categorical_crossentropy' \
-fa 'softmax' -bufsize 50 --metrics='iou_score,f1_score' -m 'erfnet' --gpus='0' -a 'mish' \
--tensorboard_train_images --tensorboard_val_images

Multi GPU training
python -m tf_semantic_segmentation.bin.train --record_dir=records/cityscapes-512x256-rgb/ \
-bs 4 -e 100 -logdir 'logs/cityscapes-bs8-e100-512x256' -o 'adam' -lr 1e-4 -l 'categorical_crossentropy' \
-fa 'softmax' -bufsize 50 --metrics='iou_score,f1_score' -m 'erfnet' --gpus='0,1,2,3' -a 'mish'

Using Code
from tf_semantic_segmentation.bin.train import train_test_model, get_args

# get the default args
args = get_args({})

# change some parameters
# !rm -r logs/
args.model = 'erfnet'
# args['color_mode'] = 0
args.batch_size = 8
args.size = [128, 128] # resize input dataset to this size
args.epochs = 10
args.learning_rate = 1e-4
args.optimizer = 'adam' # ['adam', 'radam', 'ranger']
args.loss = 'dice'
args.logdir = 'logs'
args.record_dir = "datasets/shapes/records"
args.final_activation = 'softmax'

# train and test
results, model = train_test_model(args)

Models

Erfnet
Unet

from tf_semantic_segmentation import models

# print all available models
print(list(modes.models_by_name.keys()))

# returns a model (without the final activation function)
model = models.get_model_by_name('erfnet', {"input_shape": (128, 128, 3), "num_classes": 5})

# call models directly
model = models.erfnet(input_shape=(128, 128), num_classes=5)

Use your own dataset

Accepted file types are: jpg(jpeg) and png

If you already have a train/test/val split then use the following data structure:
dataset/
labels.txt
test/
images/
masks/
train/
images/
masks/
val/
images/
masks/

or use
dataset/
labels.txt
images/
masks/

The labels.txt should contain a list of labels separated by newline [/n]. For instance it looks like this:
background
car
pedestrian


To create a tfrecord using the original image size and color use the script like this:

INPUT_DIR = ...
tf-semantic-segmentation-tfrecord-writer -dir $INPUT_DIR -r $INPUT_DIR/records

There are the following addition arguments:

-s [--size] 'width,height' (f.e. "512,512")
-rm [--resize_method] ('resize', 'resize_with_pad', 'resize_with_crop_or_pad)
cm [--color_mode] (0=RGB, 1=GRAY, 2=NONE (default))

Datasets
from tf_semantic_sementation.datasets import get_dataset by name, datasets_by_name, DataType, get_cache_dir

# print availiable dataset names
print(list(datasets_by_name.keys()))

# get the binary (waste or not) dataset
data_dir = '/hdd/data/'
name = 'tacobinary'
cache_dir = get_cache_dir(data_dir, name.lower())
ds = get_dataset_by_name(name, cache_dir)

# print labels and classes
print(ds.labels)
print(ds.num_classes)

# print number of training examples
print(ds.num_examples(DataType.TRAIN))

# or simply print the summary
ds.summary()

Debug datasets
python -m tf_semantic_segmentation.debug.dataset_vis -d ade20k

TFRecords
This library simplicifies the process of creating a tfrecord dataset for faster training.
Write tfrecords:
from tf_semantic_segmentation.datasets import TFWriter
ds = ...
writer = TFWriter(record_dir)
writer.write(ds)
writer.validate(ds)

or use simple with this script (will be save with size 128 x 128 (width x height)):
tf-semantic-segmentation-tfrecord-writer -d 'toy' -c /hdd/datasets/ -s '128,128'

Analyse already written tfrecord (with mean)
python -m tf_semantic_segmentation.bin.tfrecord_analyser -r records/ --mean

Docker
docker build -t tf_semantic_segmentation -f docker/Dockerfile ./

or pull the latest release
docker pull baudcode/tf_semantic_segmentation:latest

Prediction
pip install matplotlib

Using Code
from tensorflow.keras.models import load_model
import numpy as np
from tf_semantic_segmentation.processing import dataset
from tf_semantic_segmentation.visualizations import show, masks


model = load_model('logs/model-best.h5', compile=False)

# model parameters
size = tuple(model.input.shape[1:3])
depth = model.input.shape[-1]
color_mode = dataset.ColorMode.GRAY if depth == 1 else dataset.ColorMode.RGB

# define an image
image = np.zeros((256, 256, 3), np.uint8)

# preprocessing
image = image.astype(np.float32) / 255.
image, _ = dataset.resize_and_change_color(image, None, size, color_mode, resize_method='resize')

image_batch = np.expand_dims(image, axis=0)

# predict (returns probabilities)
p = model.predict(image_batch)

# draw segmentation map
num_classes = p.shape[-1] if p.shape[-1] > 1 else 2
predictions_rgb = masks.get_colored_segmentation_mask(p, num_classes, images=image_batch, binary_threshold=0.5)

# show images using matplotlib
show.show_images([predictions_rgb[0], image_batch[0]])

Using scripts

On image

python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -i image.png


On TFRecord (data type 'val' is default)

python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -r records/camvid/


On TFRecord (with export to directory)

python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -r records/cubbinary/ -o out/ -rm 'resize_with_pad'


On Video

python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -v video.mp4


On Video (with export to out/p-video.mp4)

python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -v video.mp4 -o out/

Prediction using Tensorflow Model Server

Installation

# install
echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -
sudo apt-get update && apt-get install tensorflow-model-server


Start Model Server

### using a single model
tensorflow_model_server --rest_api_port=8501 --model_base_path=/home/user/models/mymodel/saved_model

### or using an ensamble of multiple models

# helper to write the ensamble config yaml file (models/ contains multiple logdirs/, logdir must contain the name 'unet')
python -m tf_semantic_segmentation.bin.model_server_config_writer -d models/ -c 'unet'
# start model server with written models.yaml
tensorflow_model_server --model_config_file=models.yaml --rest_api_port=8501

Compare models and ensemnble
python -m tf_semantic_segmentation.evaluation.compare_models -i logs/ -c 'taco' -data /hdd/datasets/ -d 'tacobinary'

Parameters:

-i (directory containing models)
-c (model name (directory name) must contain this value)
-data (data directory)
-d (dataset name)

Use --help to get more help
Using Code
from tf_semantic_segmentation.serving import predict, predict_on_batch, ensamble_prediction, get_models_from_directory
from tf_semantic_segmentation.processing.dataset import resize_and_change_color

image = np.zeros((128, 128, 3))
image_size = (256, 256)
color_mode = 0 # 0=RGB, 1=GRAY
resize_method = 'resize'
scale_mask = False # only scale mask when model output is scaled using sigmoid activation
num_classes = 3

# preprocess image
image = image.astype(np.float32) / 255.
image, _ = resize_and_change_color(image, None, image_size, color_mode, resize_method='resize')

# prediction on 1 image
p = predict(image.numpy(), host='localhost', port=8501, input_name='input_1', model_name='0')

#############################################################################################################
# if the image size should not match, the color mode does not match or the model_name does not match
# you'll most likely get a `400 Client Error: Bad Request for url: http://localhost:8501/v1/models/0:predict`
# hint: if you only started 1 model try using model_name 'default'
#############################################################################################################

# prediction on batch (for faster prediction of multiple images)
p = predict_on_batch([image], host='localhost', port=8501, input_name='input_1', model_name='0')

# ensamble prediction (average the predictions of multiple models)

# either specify models like this:
models = [
{
"name": "0",
"path": "/home/user/models/mymodel/saved_model/",
"version": 0, # optional
"input_name": "input_1"
},
{
"name": "1",
"path": "/home/user/models/mymodel2/saved_model/",
"input_name": "input_1"
}
]


# or load from models in directory (models/) that contain the name 'unet'
models = get_models_from_directory('models/', contains='unet')

# returns the ensamble and all predictions made
ensamble, predictions = ensamble_prediction(models, image.numpy(), host='localhost', port=8501)

TFLite support
Convert the model
python -m tf_semantic_segmentation.bin.convert_tflite -i logs/mymodel/saved_model/0/ -o model.tflite

Test inference on the model
python -m tf_semantic_segmentation.debug.tflite_test -m model.tflite -i Harris_Sparrow_0001_116398.jpg

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Files In This Product:

Customer Reviews

There are no reviews.