VisCARS 1.0.2

Creator: bradpython12

Last updated:

0 purchases

VisCARS 1.0.2 Image
VisCARS 1.0.2 Images
Add to Cart

Description:

VisCARS 1.0.2

VisCARS: Graph-Based Context-Aware Visualization Recommendation System

Installation
Create a virtual environment using virtualenv or anaconda3:
conda create -n myenv python=3.9
conda activate myenv

Install the latest version from PyPI in your environment:
pip install viscars

Basic usage
Load the dataset
from rdflib import Graph

graph_ = Graph()
graph_.parse('../data/protego/protego_ddashboard.ttl')
graph_.parse('../data/protego/protego_zplus.ttl')
graph_.parse('../data/protego/visualizations.ttl')

Initialize the two-stage recommendation pipeline
from viscars.dao import ContentRecommenderDAO, VisualizationRecommenderDAO
from viscars.recommenders.cacf import ContextAwareCollaborativeFiltering

# Initialize Content Recommender (stage 1)
content_dao = ContentRecommenderDAO(graph_)
content_recommender = ContextAwareCollaborativeFiltering(content_dao, cbcf_w=0.5, ubcf_w=0.5, verbose=False)

# Initialize Visualization Recommender (stage 2)
vis_dao = VisualizationRecommenderDAO(graph_)
visualization_recommender = ContextAwareCollaborativeFiltering(vis_dao, ubcf_w=1, verbose=False)

Run the pipeline for a user and context
# user = 'https://dynamicdashboard.ilabt.imec.be/users/4' # Operator
user = 'https://dynamicdashboard.ilabt.imec.be/users/5' # Nurse

context = 'http://example.com/tx/patients/zplus_6' # Diabetes

content_recommendations = content_recommender.predict(user, context, k=5)

# Find cutoff for Multiple-View recommendation
# We recommend the top x items, where x is the average number of items rated by users in the context
ratings = content_dao.ratings[(content_dao.ratings['c_id'] == context)]
c = int(ratings.value_counts('u_id').mean())

visualization_recommendations = []
for recommendation in content_recommendations[:c]:
# Recommend visualizations
recommendations = visualization_recommender.predict(user, recommendation['itemId'], k=5)
visualization_recommendations.append({'propertyId': recommendation['itemId'], 'visualizationId': recommendations[0]['itemId']})

Example output



propertyId
visualizationId




.../things/zplus_6.lifestyle/properties/enriched-call
.../things/visualizations/enriched-call


.../things/zplus_6.60%3A77%3A71%3A7D%3A93%3AD7%2Fservice0009/properties/org.dyamand.types.health.GlucoseLevel
.../things/visualizations/time-series-line-chart-with-time-range-selector


.../things/zplus_6.AQURA_10_10_145_9/properties/org.dyamand.aqura.AquraLocationState_Protego%20User
.../things/visualizations/scrolling-table



Citation

License

For personal and professional use. You cannot resell or redistribute these repositories in their original state.

Files In This Product:

Customer Reviews

There are no reviews.

Related Products

More From This Creator